DMA-80 Direct Mercury Analyzer

Introduction

- Mercury in the atmosphere can be from manmade sources (coal-fired power plants, municipal incinerators, industrial boilers) or from natural sources (forest fires, geologic formations, volcanoes)
- Precipitation is the primary mechanism for transporting airborne gaseous or particulate mercury from the atmosphere to surface water and land

Mercury Analysis

Method	Technique	Sample type
7470A	CV-AAS	Liquid waste
7471A	CV-AAS	Solid or semi-solid waste
7472	ASV	Aqueous samples and extracts

- Cold Vapor-Atomic Absorption Spectroscopy
 - Samples are digested or dissolved
 - Mercury is reduced to free atomic state by using tin (II) chloride or sodium boro-hydride in a closed reaction vessel
 - Mercury is measured by atomic absorption

Step	Description	Time	
Sample acid digestion	Hot plate	2 hours- 2 days	
	Closed vessel microwave	20 minutes- 1 hour	
Mot chomistry	Interference removal	1 hour	
vvet chemistry	Mercury reduction		
Analysis	AAS	Few minutes	

CV-AAS and ASV

- Both methods require sample digestion and further wet chemistry
- Sample digestion can be problematic because of Hg volatility
- Sample preparation is the bottleneck for higher analytical productivity

DMA-80 Direct Mercury Analyzer

DMA-80 Advantages

- Direct Hg determination at trace level on solid and liquid samples
- No sample digestion step
- No wet chemistry pre-treatment step
- Fast, approximately 6 minutes per sample
- Eliminates waste disposal
- Validated results (US EPA method 7473) for solid and liquid matrices

DMA-80 Principle of operation

- Solid or liquid samples are weighed and introduced in the DMA-80
- The sample is initially dried and then thermally decomposed in a oxygen flow
- Combustion products are carried off and further decomposed in a hot catalyst bed
- Mercury vapors are trapped on a gold amalgamator and subsequently desorbed for quantitation
- The mercury content is determined using atomic absorption spectrophotometry at 254 nm

DMA-80

- Major components
 - Sample dosing system
 - Thermal process furnaces
 - Atomic absorption spectrophotometer
 - System controller

Sample Dosing System

- Built-in 40 position auto-sampler for high throughput unattended operation, for solid and liquid samples
- Maximum sample weight 500 mg
- Maximum sample volume 500 μ l
- Possibility of multiple sample dosing for Hg preconcentration on amalgamator

Sample Introduction

Fully Loaded Autosampler

Pipetting Liquid Samples

Thermal process

Thermal Process

Step	Temperature range	Typical temperature	Time range	Typical time
Drying	20-300°C	300°C	0-300 s	60 s
Decomposition	800-1.000°C	850°C	0.420 c	190 -
Catalysis	550-650°C	600°C	0-420 \$	180 \$
Amalgam	850-950°C	900°C	0-30 s	12 s

Function	Carrier and decomposition gas
Inlet pressure	4 bar (60 psig)
Flow rate	200 ml/minute
Purity	"Research" grade (O ₂ > 99,95%)

Atomic Absorption Spectrophotometer

AAS Technical Data

Instrument optics	Single beam spectrophotometer with sequential flow through of measurement cells
Light source	Low pressure mercury lamp
Wavelength	253,65 nm
Interference filter	254 nm, 9 nm bandwidth
Detector	Si-photodiode sensor

Typical Absorbance Profile

DMA-80

Performance Specifications

Data	Total Hg (ng)	Hg concentration ⁽¹⁾ (μg/kg)
Working range ⁽²⁾	(1 st) 0,02-35 (2 nd) 35-600	(1 st) 0,2-350 (2 nd) 350-6.000
Detection limit	0,02	0,2
⁽¹⁾ Sample weight 100 mg ⁽²⁾ Automatic switching when absorbance 0,8		

DMA-80 Performance Specifications

Typical reproducibility	< 1,5%
Typical analysis time	6 minutes

System controller

- Lab TERMINAL
 - Touch-screen Pentium-based controller, 266 MHz, 64 MB Ram, Windows 98, Color 12,1" TFT SVGA monitor, CD-ROM, FD, Smart Card Reader, 2 COM, 1 USB, LAN ports
- Standard bench-top computer with similar specifications
- Dedicated Terminal 1024

Terminal 1024

- 12" large high resolution color screen controller
- "Touch control" display
- Supplied with keyboard and mouse
- "EasyControl" software for a complete control of all reaction parameters
- Optional "EasyDoc" software for data export on external computer

EasyControl Software

- Evolution of previous Windows[™] based DMA-80 software
- Selectable calibration algorithm
- Virtually unlimited memory for programs and actual data storage
- Built-in service and diagnosis functions
- CFR-21 part 11 compliant

System Status

1st Cell Linear Calibration

1st Cell Square Calibration

Measurement/Graphic

Balance Setup

Received Text	+ 0.1055 g
Shown Weight	0.1055 g
Communication.setting	sJunit.and.presision.of.balance
Manufacturer Precisa of balance	Unit of 0.0001 g 💌
Baudrate 9600 Baud (to balance)	
Databits 8 Bits (to balance)	
Parity None (to balance)	

History Trail CFR 21 Part 11

	History Tr	rail
Time	User	Changes
10.10.03 10:30	Service	Login (Service)
10.10.03 10:34	Service	Login (Service)
13.10.03 08:59	Service	Login (Service)
13.10.03 09:20	Service	Login (Service)
13.10.03 09:34	Service	Login (Service)
13.10.03 09:43	Service	Login (Service)
13.10.03 12:03	Service	Login (Service)
14.10.03 10:59	User	Login (User)
14.10.03 16:54	Service	Login (Service)
15.10.03 15:15	Service	Login (Service)
15.10.03 15:18	Service	Login (Service)
15.10.03 16:38	Service	Login (Service)
16.10.03 08:50	<unknown></unknown>	Login failure: 3 illegal tries for <service></service>
16.10.03 08:50	Service	Login (Service)
16.10.03 09:05	Service	Login (Service)
16.10.03 09:08	Service	Login (Service)
16.10.03 09:26	Service	Login (Service)
16.10.03 09:31	Service	Login (Service)
16.10.03 10:05	Service	Baudrate (to balance) changed to "9600 Baud"
16.10.03 10:31	Service	Login (Service)
16.10.03 14:43	Administrator	Login (Administrator)
I R		Usage 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mercury Trap

- Optional mercury trap to be located at DMA-80 outlet
- Activated charcoal
- Safe operation
- Easy and ready to install

DMA-80 Analytical Performance

Getting Started

- Oxygen cylinder with gas regulator stable at 4 bar (60 psig)
- Power 115-230 V/50-60 Hz
- Analytical balance with serial interface
- Windows compatible printer
- Standard reference materials
- Aqueous standards
- Precision pipettes

DMA-80 Calibration

DMA-80 Calibration

- Liquid standards
 - Different concentrations, same volume
 - Same concentration, different volumes
 - Use fresh standards, stabilized with HNO₃ or HCI/K₂Cr₂O₇
- Solid standards
 - Certified mercury content
 - Vary by weight

Calibration 1st Cell

Solution	Absorbance	RSD (n=3)
Blank	0,0012	16,7%
5 ng	0,1272	1,5%
10 ng	0,2549	2,2%
20 ng	0,4996	1,2%
30 ng	0,7223	0,6%

Calibration 2nd Cell

Solution	Absorbance	RSD (n=3)
100 ng	0,1546	2,2%
200 ng	0,3117	1,9%
500 ng	0,7285	0,9%

Calibration Curves

DMA-80 Accuracy

Certified Reference Materials

Sample	Hg content (µg/kg)
NIST 1568a Rice Flour	$5,8 \pm 0,5$
NIST 1573a Tomato Leaves	34 ± 4
NIST 1630a Coal	93,8 ± 3,7
NIST 1633b Fly Ash	141 ± 19
NIST 2709 Soil	1.400 ± 80
NIST 2711 Soil	6.250 ± 190

NIST 1568a Rice Flour

NIST 1573a Tomato Leaves

NIST 1630a Coal

NIST 1633b Fly Ash

NIST 2709 Soil

NIST 2711 Soil

DMA-80 Precision

Fresh Salmon

Collecting Sample

Weighing

Loading Autosampler

Loading Furnace

After Analysis

Fresh Salmon

Run	Weight (g)	Hg (µg/kg)
1	0,2849	55,4
2	0,2296	54,1
3	0,2330	57,8
4	0,3404	58,0
5	0,2992	56,2

Fresh Salmon

Average (µg/kg)	56,3
Sd (µg/kg)	1,6
Ν	5

DMA-80 Detection Limit

Detection Limit

The detection limit is defined as the concentration which will give an absorbance signal of two (sometimes three) times the magnitude of the baseline noise. The baseline noise may be statistically quantified typically by making ten or more replicate measurements of the baseline absorbance signal observed for an analytical blank, and determining the standard deviation of the measurements. The detection limit is then defined as the concentration which will produce an absorbance signal twice (or three times) the standard deviation

Detection Limit

Run	Absorbance	Run	Absorbance
1	0,0007	6	0,0010
2	0,0010	7	0,0008
3	0,0006	8	0,0010
4	0,0008	9	0,0008
5	0,0007	10	0,0006

Detection Limit

Average	0,0008
Sd	0,000156
3*Sd	0,000468
DL	0,02 ng

DMA-80 Memory Effect

DMA-80 Memory Effect

Sample	Absorbance	Mercury content (ng)
Standard 500 ng	0,7285 (2 nd)	500 (set)
Blank 1	0,0374 (1 st)	1,5
Blank 2	0,0097 (1 st)	0,4

DMA-80 Memory Effect

Quartz Boats

- Analysis of liquids with DMA-80 autosampler
- Improved performance
 - Lower memory effect
 - Better reproducibility
- Longer life time

Quartz vs. Metal Boats

Milestone Srl

Memory Effect

Sample ID	Weight (g)	Height	Hg (ng)	Result (µg/kg)
1	0,100	0,1474	110,60	1.106,01
1	0,100	0,0011	0,05	0,45
1	0,100	0,000	0,00	0,01

Reproducibility at Low Concentrations

Weight (g)	Height	Hg (ng)	Results (µg/kg)
0,100	0,0222	0,87	8,72
0,100	0,0218	0,85	8,53
0,100	0,0217	0,85	8,51
0,100	0,0216	0,85	8,49
0,100	0,0217	0,85	8,50
Statistics	RSD 1,01%	SD 0,09 μg/kg	AVG 8,55

Reproducibility at High Concentrations

Weight (g)	Height	Hg (ng)	Results (µg/kg)
0,100	0,1517	113,88	1.138,8
0,100	0,1514	113,62	1.136,2
0,100	0,1520	114,13	1.141,3
0,100	0,1543	115,87	1.158,7
0,100	0,1523	114,34	1.143,4
Statistics	SD 7,88 μg/kg	RSD 0,69%	AVG 1.143,7

Lifetime

Milestone Srl

- US EPA method 7473
 - Mercury in solids and solutions by thermal decomposition amalgamation and atomic absorption spectrophotometry

Comparison DMA-80 vs. CV-AAS

Comparison DMA-80 vs. CV-AAS

Technique	DMA-80	CV-AAS
Sample preparation	Not required	Acid digestion
Wet chemistry	Not required	Yes, to eliminate interferences
Waste generation	Minimal	Yes
Sample type	Liquid and solids	Aqueous
Sample size	Up to 500 mg sample	100 ml solution
Working range	Up to 600 ng	Limited to low range
Running cost	Moderate	Elevated

Time Comparison DMA-80 vs. CV-AAS

DMA-80 Major Applications

- Biological
 - Blood, urine, hair, tissue, plankton
- Liquids
 - Waste water, crude oil, heavy oil, detergents, paints
- Solids
 - Coal, fly ash, soil, sediment, sludge, minerals, food, feed, plastic, wood, vegetables, leaves, waxes
- Medicinal
 - Pharmaceuticals, gelatin capsules, lipstick, lotions

DMA-80 Direct Mercury Analyzer

Milestone Srl