

Characteristics of Microwave Energy Microwaves are electromagnetic radiation between the far IR and radio waves Microwaves are nominally between 1 mm and 100 cm in length (*e.g.*, 2450 MHz wave is 12.25 cm) Microwave energy is non-ionizing, low photon electromagnetic radiation at the powers used Microwave radiation causes molecular (particle) and ionic motion and dipole rotation Microwave energy does not cause a change in molecular structure

Μ	icrow	ave Er	nergy vers	us	
Othe	er Elec	ctroma	agnetic En	ergy	
Radiation Type	Typical Frequency (MHz)	Quantum Energy (ev)	Chemical Bond Type	Chemical Bond Energy (ev)	
Gamma Rays	3.0 x 10 ¹⁴	1.24 x 10 ⁶	н-он	5.2	
X-Rays	3.0 x 10 ¹³	1.24 x 10⁵	H-CH3	4.5	
Ultraviolet	1.0 x 10 ⁹	4.1	H-NHCH ₃	4.0	
Visible Light	6.0 x 10 ⁸	2.5	H ₃ C -CH ₃	3.8	
Infrared Light	3.0 x 10 ⁶	0.012	PhCH ₂ -COOH	2.4	
Microwaves	2450	1.013x10⁻⁵	H, H+ 0, H	0.21	
Radio	1	4 x 10 ⁻⁹	(-) (-) H		

Liquids (mineral acids, solvents) heat rapidly when exposed to microwave energy. Absorption of microwave energy occurs by two mechanism:

Dipole Rotation Ionic Conduction

Sources of (Internal) Heat (via Energy Transformations)

- ♦ Molecular Rotation
- Conformational Changes
- ♦ 3-Dimensional Distortion
- ♦ Ion Flow Enhancements
- ♦ Liquid Structure Dissipation

Superheated Temper	atures of Solvents	Irradiated with Mi	crowave Energy
Solvent	Boiling Point, °C **	Superheated Temperature, °C	Temperature Difference, °C
Water	100	105	5
1-butanol	117	138	21
2-butanol	98	127	29
tert-butanol	83	112	29
methanol	65	84	19
2-propanol	82	108	26
1-pentanol	136	157	21
2-pentanol	119	135	16
tert-pentanol	120	115	13
1-heptanol	176	208	32
ethylene glycol	196	216	20
acetone	56	89	89
ethyl acetate	77	102	33
chloroform	61	89	25
diethyl ether	35	60	28
tetrahydrofuran (THF)	67	103	36
acetonitrile	82	120	38
cyclohexane	155	186	31
methyl ethyl ketone (MI	EK) 80	110	30
Reference: Majetich, G.; Nea * In 1 liter flask; ** B.P. at 76	s, E.; Hoopes, T. <i>Journal</i> 0 mm. Handbook of Cher	of Chemical Education, 199 nistry and Physics, CRC Pro	a ess, Inc.

Factors that Affect Materials Heated with Microwaves

- ◆ Angle of incidence of radiation
- ♦ Frequency
- ♦ Dielectric Constant
- ♦ Impedance
- Loss Mechanisms
- Mass and Molecular Size
- ♦ Magnetic Properties

Dipole N	Ioment
CCl ₄	
CO	0.10
HCl ———	1.08
H ₂ S	
C ₃ H ₈ O	1.66
HF	1.82
H ₂ O	
CH ₄ Cl	1.87
HNO ₃	2.17
HCN	2.93
CsF Handbook of Chemistry and Physics,	60th Edition, CRC Press, 1980.

Effect of Temperature on the Dissipation Factor of Water				
Temperature, °C	Tangent δ (10 ⁻⁴)	a		
1.5	3100			
5.0	2750			
15.0	2050			
25.0	1570			
35.0	1270			
45.0	1060			
55.0	890			
65.0	765			
75.0	660			
85.0	547			
95.0	470			
^a measurement	at 3000 MHz and 25° C			

Selected Phys	sical an	d Diele	etric Co	onstants of Organ	ic Solvents
Solvent	<u>BP</u>	VP	<u>E'</u>	Dipole Moment	<u>tan δ x10</u> -4
acetone	40	436	8.93	1.14	
methanol	56	184	20.7	2.69	6400
tetahydrofuran	65	125	32.7	2.87	
hexane	69	120	1.88	<0.1	
ethyl acetate	77	73	6.02	1.88	
ethanol	78	-	24.3	1.69	2500
acetonitrile	82	89	37.5	3.44	
2-propanol	82	32	19.9	1.66	6700
1-propanol	97	14	20.3	3.09	~2400*
iso-octane	99	49	1.94	0	
water	100	760	78.3	1.87	1570
MIBK	116	20	13.11	-	
DMF	153	2.7	36.71	3.86	
DMSO	189	0.6	46.68	3.1	
ethylene glycol	198	-	41.0	2.3	10,000
note: data from Bur VP (torr) at 25°C; e' IMPIsymposium, 198	dick & Jao at 20 °C; c 89). Tan δ	ckson Labo lipole mon values fro	oratories So nent at 25 °C m von Hipp	lvent Handbook. BP at 76 C. * at 10 °C (E.Peterson, el, MIT Presss, 1954.	0 torr,

Thermal and Labora	l Microv tory Co	vave Character ntainer Materi	ristics of als
Material	Melting Point (°C)	Maximum Service Temperature (°C)	Tangent δ (x10 ⁻⁴)
Water		- · ·	1570
Sodium chloride (0.1 mc	lal)		2400
Polysulfone	໌<190	160	760
Phenol/formaldehyde	dec	120-190	519
Bakelite (asbestos filled) dec	200-218	438
Nylon 6/6	253	102	128
Glass (Corning 0800)	>1000		126
Glass (Borosilicate)	>1080		12-75
Ceramic (depends on ty	pe)		6-50
Polypropylene	168-171	100-105	57
Polymethylmethacrylate	115	76-88	57
Porcelain (4462)			11
Polystyrene	242	82-91	3.3
Polyethylene	120-135	71-93	3.1
Kel-F, CTFE	198-211	199	2.3
Polymethylpentene	240	175	
Tefzel, TFE+CE	271	200	2.0
Halon, (P)TFE	>320	260	1.5
Teflon®, FEP	252-262	204	
Teflon®, PFA	302	260	1.5
Polycarbonate	241	121	0.7
Quartz, fused	>1665		0.6
reprinted with permission Microwave Sample Prepa	from Kingston, ration" copyrigh	H.M; Jassie, L.B. "Introduction t 1988, American Chemical So	n to

Calibration of a Microwave Oven ◆ Weigh 1 kg of ~ 23°C DI water in a plastic vessel \blacklozenge Measure initial temperature of the water (T_i) to ±0.05 $^\circ C$ ◆ Irradiate 1 kg of water for 2 minutes at three different power settings (e.g., 100%, 50% and 25%). ◆ Measure final temperature of water (T_f), ±to 0.05 °C with stirring; use highest temperature • Repeat twice more with new sample of room temperature water in room temperature container • Calculate unit power according to the formula $\underline{\mathbf{K} \mathbf{x} \mathbf{C} \mathbf{p} \mathbf{x} \mathbf{M} \mathbf{x} \ \Delta \mathbf{T}} \qquad \Delta \mathbf{T} = (\mathbf{T}_{\mathbf{f}} \cdot \mathbf{T}_{\mathbf{i}})$ Power = t for 1000 g water and 120 s, the equation becomes Power (watts) = 34.85 x Δ T

Cycling the Magnetron

Controls the power to obtain average power level

Duty Cycle = <u>length of time magnetron is on</u> time base Time base = 60 Hz (60 times/sec)

Time base = 60 Hz (60 times/sec)

Examples

- 1. 500 W on a 1000 W unit (50%) with a 60 Hz time base the magnetron goes on 30 times/sec and off 30 times/ sec. In 10 min at 50% power, a MW field is created 18,000 times and gives the appearance of continuous power
- 2. 500 W on a 1000 W unit (50%) with a 1 sec time base has the magnetron on 0.5 sec and off 0.5 sec. In 10 min heating at 50%, a field is created 600 times

A	Absorbed	Microwave Pow	er
	in Mı	ıltiple Vessels	
Number <u>of Vessels</u>	<u>Thermister</u>	Digital Thermometer	<u>Mean</u>

1	989 + 13	963 + 5	967 + 2	973 + 8
2	965 ± 12	900 <u>-</u> 0 991 ± 30	997 ± 15	984 ±19
5	982 ± 5	995 ± 10	986 ± 17	991 ± 6
$\mathbf{\bar{X}}$	979 ± 12	983 ± 17	986 ± 17	982 ± 9
- uncertain - range of u - MDS-205	ty is expressed as one incertainty is 0.4% to at 100%, starting wa	standard deviatio 3% fer femperature 2	n 3 + 2 °C. 12/3/90	

Goal:

Achieve Control of Sample Preparation/ Decomposition/Extraction/ (and post reaction sample manipulation) Using Unique Mechanisms (& apparatus)

Control of

- Reaction Chemistry
- Microwave Energy Transfer
- Microwave Reaction Mechanisms
- Equipment Configuration and Operation
- Reaction Environment

© H. M. Skip Kingsto

Quantum Absorption of Microwave Energy
is Predictable and ControllableFundamental Relationship $P_{absorbed} = \frac{KCpm\Delta T}{t}$ Used to Predict Temperature $T_f = T_i + \frac{P_{absorbed} \cdot t}{K \cdot C_p \cdot m}$ Deviation from Ideal Conditions $T_f = T_i + \frac{P_{absorbed} \cdot t}{K \cdot C_p \cdot m}$ - Heat LossDependent on Equipment Configuration

© H. M. Skip Kingsto

Final Microwave Heating Profile of 16 mL of Nitric and Hydrofluoric Acids (5:3 v/v). What is happening? Why do they appear this way? OFF 200 288 W Т ပ္ရ 6 atm Temperatur 5 150 **FEMPERATURE**. PRESSURE, 100 3 2 50 1 0 5 10 15 0 TIME, min 围 (Reprinted with permission from ACS, copyright 1988 American Chemical Societu) C H. M. Skip Kingstr

Temperature, °C	Pressure lb/in ²	P, atm
133	180	12.3
165	380	25.9
192	630	42.9
219	995	67.7
256	1565	107
285	2245	153
313	2945	200

Volatile Elements and MW Heating in Closed Systems

Normal Heating

- ♦ Solvated ions (Cl⁻, F⁻) in solution have no vapor pressure
- At elevated temperatures, vapor pressure of Cl⁻ and F⁻ metal salts is much higher than acid vapor pressures

Reduced Pressure (vacuum)

- Solution vaporization temperatures appear to decrease as volume decreases; accompanying boiling points and acid vapor pressures decrease as well
- ♦ Final solution temperature of 3 mL is < 60°C. B.P. of volatile salt is never reached
- Link, D. D., Kingston, H. M. Anal. Chem. 72(13), July 1, 2000, p 2908

Safety in Microwave Digestion Systems

"Laboratory Microwave Devices are Chemical Reaction Systems"

- Microwave digestion systems are general purpose systems. Reactants and reaction conditions are not specified and are often unknown in some cases.
- Microwave digestion systems are designed to meet electrical, mechanical and chemical safety standards, as well as safety factors specific to microwave heating
- Microwave digestion systems that have a means of cooling (air flow or liquid) remove heat from outer jacket and can moderate reaction rates
- Microwave digestion systems do not control pressure directly (*i.e.*, no control or check valve or back pressure regulator).

Mechanical and Radiation Safety

Mechanical

Door- positive button release; interlock monitoring system Latches- safety interlocks; separate circuitry Thermal Switches- prevent magnetron overload, door interlocks compromised Exhaust-variable speed fan; corrosion resistant plastic hose Inlet/Outlet Ports- stainless steel wavelength attenuators Isolator-patented reflected power circulator Teflon Coated Stainless Steel Cavity- < 5 mw/cm² leakage

Radiation

Mirowave Leakage Detectors- survey meters

Pressure Can be Dangerous

Vessels

Construction- molding, machining Design- threaded, pressure seals, edges Materials- plastic, polymers, glass, metal rotors, and frame construction

Safety Devices

Relief disks Relief diaphragms, membranes Compression devices External relief valves

MARS 5 Digestion System Hardware & Software Safety Features

Hardware (integral software)

ReactiGuardTM: sensor disables magnetron in case of disruptive event in the cavity

Turntable sensor: senses stop-software override restarts rotation

 $TempGuard^{TM} \mbox{ (optional): IR temperature sensor to prevent vessels overheating}$

SafetyLock Door: positive button release, spring-loaded metal door (burps when vessel vents violently)

Safety Switch: shuts down magnetron in case of overheating

Isolator: shunts reflective MW energy to dummy load, prevents magnetron from overheating

MARS 5 Digestion System Hardware & Software Safety Features

Software

Temperature: 0-300 °C (jacketed); 0-260 °C (Thermo-Optic) automatic default at 210 °C

Pressure: sensed 200 times/minute- control to 800 psi, and monitor to 1500 psi; sensor drop > 20psig/5 sec shuts off MW power

AutoLoadTM sensing: checks power to maintain 90% on rate

Chemical Safety Concerns at High Temperature Mineral Acids Perchloric. Dangerous hot Explosive with potassium Decomposes to Cl₂ gas Sulfuric..... Dehydrating agent Hvdrofluoric.. **Biological irritant/poison** Aqua Regia.... Nitrosyl chloride gas irritant **Alkaline Hydroxides** NaOH, KOH, LiOH Caustic, dehydrating, biological irritants Peroxides Potent oxidizer Hydrogen..... Organic Ethers.. Explosive **Organic Solvents**

toxcity; explosiveness; flammability; noxiousness; volatility

How to Avoid Forming Potentially Dangerous Hydrogen Mixtures During Microwave Acid Digestion of Metals/Alloys

- Seal closed digestion vessels in inert gas atmosphere
 - ◆ *e.g.*, glove-box under nitrogen or argon
- Purge vessel with nitrogen or argon after addition of acid
- Purge microwave compartment with inert gas (argon or nitrogen) when open vessels are used

Compounds Unsuitable for Closed Vessel Microwave Acid Digestion

- Explosives (TNT, nitrocellulose, etc.)
- Propellants (hydrazine, ammonium perchlorate, etc.)
- Pyrophoric chemicals
- \blacklozenge Hypergolic mixtures (nitric acid with phenol, triethylamine, or acetone)
- \blacklozenge Animal Fats (glycerol esters undergoing nitration to nitroglycerin)
- Aviation Fuels (JP-1)
- Acetylides (compounds of acetylene)
- Glycols (ethylene glycol, propylene glycol, etc.)
 Perchlorates (potassium, ammonium)
- Fercinorates (potassium, a
 Ethers (Cellosolve, etc.)
- Lacquers
- ◆ Alkanes (butane, hexane, *etc.*)
- Ketones (acetone, methyl ethyl ketone, etc.)

